由于柔软的机器人越来越多地在需要高度和受控接触力的环境中使用,最近的研究表明,使用软机器人来估计或本质上感应而不需要外部传感机制。虽然这主要被示出在肌腱的连续管道机构或包括推拉杆致动的可变形机器人,但由于高致动变异性和非线性机械系统响应,流体驱动器仍然造成巨大挑战。在这项工作中,我们调查液压,并联软机器人至本质上的能力和随后控制接触力。导出了一种综合算法,用于静态,准静态和动态力感测,依赖于系统的流体体积和压力信息。该算法验证了单一自由度软流体致动器。结果表明,在准静态配置中,可以在验证范围内的验证范围内的0.56±0.66n的精度下估计作用在单个致动器上的轴向力。力传感方法应用于在单个致动器中强制控制以及耦合的并联机器人。可以看出,两种系统可以准确地控制力,以在多自由度平行软机器人的情况下控制定向接触力的能力。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译